Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia.
نویسندگان
چکیده
Differentiation into a tracheary element (TE) is a typical example of programmed cell death (PCD) in the developmental processes of vascular plants. In the PCD process the TE degrades its cellular contents and becomes a hollow corpse that serves as a water conduct. Using a zinnia (Zinnia elegans) cell culture we obtained serial observations of single living cells undergoing TE PCD by confocal laser scanning microscopy. Vital staining was performed and the relative fluorescence intensity was measured, revealing that the tonoplast of the swollen vacuole in TEs loses selective permeability of fluorescein just before its physical rupture. After the vacuole ruptured the nucleus was degraded rapidly within 10 to 20 min. No prominent chromatin condensation or nuclear fragmentation occurred in this process. Nucleoids in chloroplasts were also degraded in a similar time course to that of the nucleus. Degradations did not occur in non-TEs forced to rupture the vacuole by probenecid treatment. These results demonstrate that TE differentiation involves a unique type of PCD in which active and rapid nuclear degradation is triggered by vacuole rupture.
منابع مشابه
ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements.
Tracheary elements (TEs) have a unique cell death program in which the rapid collapse of the vacuole triggers the beginning of nuclear degradation. Although various nucleases are known to function in nuclear DNA degradation in animal apoptosis, it is unclear what hydrolase is involved in nuclear degradation in plants. In this study, we demonstrated that an S1-type nuclease, Zinnia endonuclease ...
متن کاملTracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis
Tracheary element differentiation requires strict coordination of secondary cell wall synthesis and programmed cell death (PCD) to produce a functional cell corpse. The execution of cell death involves an influx of Ca2+ into the cell and is manifested by rapid collapse of the large hydrolytic vacuole and cessation of cytoplasmic streaming. This precise means of effecting cell death is a prerequ...
متن کاملImpact of Duration and Severity of Persistent Pain on Programmed Cell Death
Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...
متن کاملVisualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells.
Plants have a unique transdifferentiation mechanism by which differentiated cells can initiate a new program of differentiation. We used a comprehensive analysis of gene expression in an in vitro zinnia (Zinnia elegans L.) culture model system to gather fundamental information about the gene regulation underlying the transdifferentiation of plant cells. In this model, photosynthetic mesophyll c...
متن کاملImpact of Duration and Severity of Persistent Pain on Programmed Cell Death
Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 125 2 شماره
صفحات -
تاریخ انتشار 2001